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Today'’s talk

+ Contrast Black Carbon (BC) to CO,
+ What is BC?

+ Climate effects of BC

+ Climate mitigation via BC

+ Health vs. climate effects

+ Key areas for progress



Observations show strong warming trends
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Contrast BC and CO,

+ Technical differences in their climate effects
m BC affects solar radiation and snow reflectance

+ BC short lived in atmosphere

1. Emissions from different regions/sources have
different effectiveness as a GLOBAL climate
change agent

2. Potential for localized climate effects

3. Mitigation of BC has little effect on long term
climate change BUT can have large effect on
near term climate

+ BC mitigation has direct benefit on air quality



WHAT IS BLACK CARBON?




We know what black carbon is

Black carbon aggregates

Unique combination of :
Strong light absorption

Mass absorption cross section of at least 5
m?g-1, for 550 nm light.

Refractory

Retains basic form at very high
temperatures: vaporization temperature near
4000K.

"/ Insoluble
In water and organic solvents

Aggregate

‘=% of small carbon spherules

But measurement techniques don’t always capture it



Black carbon is a small component of mass

Even in polluted regions

(a) T0 (IMP), March 2006 Other particle
TSN components do not

absorb light, or
ST, absorb very little.

Ammonium,
2.0, 6%

Choe. 01, They COOL the
Earth because they
e reflect light.

Mass in Mexico City (Aiken et al.,
Atmos. Chem. Phys. 9, 6633, 2009

Major components:
sulfate,
organic carbon



this candle is making
black carbon
right here
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and this one is making
“organic” carbon...
no flame, no game! 10



CLIMATE EFFECTS OF BC
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“Comprehensive” with regard to climate effects
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Estimate of
black
carbon
forcing
from
Bounding-
BC

Global climate forcing of black carbon and co-emitted species in the industrial era (1750 - 2005)
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e Black carbon is the 2" most important climate forcing agent
iIn 2000-2005.
e But, the climate forcing of co-emitted species substantially

offsets the radiative forcing of black-carbon emissions alone. 13
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Unlike CO,, BC is not evenly distributed

- Need many measurements to constrain distribution
- can’t be retrieved from space-borne measurements yet

Black carbon absorption aerosol optical depth

&
‘ Global average
0.00212
i’-—-—_:-
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Observations key but typically indirect

+ Based on global network AERONET

+ Inferred total absorption from aerosol optical depth and
single-scattering albedo

+ Both BC and dust absorb light; division is questionable

AERONET sites
(Credit: NASA)

Note limited
coverage in some
major emitting
regions




Snow and ice
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BC deposited on snow has positive forcing

Think of BC as a very small rock.

BC reduces Solid takes up Exposed surface

SNOW'’S heat; heat melts absorbs heat and

reflectivity snow (or ice) melts remaining
SNOW

Net result: Effect is greater than just direct forcing

18



Forcing by BC In snow and ice
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CLIMATE MITIGATION VIA BC
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BC alone is a an incomplete story

+ Sources that emit black carbon also emit other

short-lived species *
that affect climate

= Sulfate: COOLING
= Organic carbon: COOLING
n Gases: WARMING or COOLING

+ Shutting off a source entirely
removes all species

+ Mitigation actions affect
each species differently

* gpecies = chemical species

21



BC emissions by region & source type

More co-emitted species = Greater likelihood of cooling

Black carbon and co-emitted species by region and source in 2000
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Guide to “first-year” forcing graphs

Direct, snow forcing, ozone

High confidence in attribution
] BC atmosphere I SO, atmosphere

] BC snow C1COon O,
0 POA atmosphere B NMVOC on O,
B POA snow B NO, on O,

Cloud & Nitrate forcing

Low confidence
in attribution
& BC lig clouds
] BC other clouds
1 POAclouds
B SO, clouds
B NO, on NO;

B Total

e




What if the uncertainty crosses zero?

0
: ~ . Direct — definitely from this source
- ] Indirect— not sure forcing is from this
—T , | source
% —'. :
I— Total

90% confidence

+ Best estimate i1s warming if “Total” bar Is red.

+ There Is some probability that the overall effect of the
source Is cooling.
= This probability depends on how much whisker is below zero.

+ There iIs also some probability that the overall effect of the
source Is much more warming than the central estimate.

+ Need a risk analysis approach



Climate forcing:
BC-rich source
categories

Diesel engines

On-road diesel

Off-road diesel

First-year forcing only

+ Some
categories net
positive (red)

+ Some net
negative (blue)

+ Sign Is
unknown for

many
categories

Residential solid fuel

Industrial coal
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Cumulative forcing

On-road diesel

Diesel engines

+ Other BC sources

+ Residential coal

+ Biofuel cooking

Residential solid fuel

o
c
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3
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@
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O | + Grasses and woodlands !
| ==
Total BC-rich sour; - SN
+ Power generation !
o) Y it T
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- |
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Cumulative alobal forcina (W m ~2)

(add selected categories)

— BC - all effects
BC, POA, SO, - direct and snow
— All effects < 1 year
| = All aerosol effects

BC forcing positive (+0.33)
Total forcing positive (+0.15)

BC forcing positive (+0.72)
Total forcing still positive (+0.21)
although clouds make it less certain

BC forcing positive (+1.01)
Total forcing nearly neutral (-0.06)

because of large OC & its cloud forcing
(note: simple sum differs from BC
medlian produced by Monte Carlo analysis)

Remainder of aerosol forcing
is in low-BC categories (total -0.95)
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HEALTH VS. CLIMATE EFFECTS OF
BC
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View of trade offs
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Schneidemesser and Monks, 2013

' jyeuag ebBueyn sjewnn

28



View of trade offs

Climate Change Detriment

Air Quality Benefit

é N

Flue gas desulfurization

Three-way catalysts
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View of trade offs

Climate Change Detriment
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View of trade offs
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View of trade offs

Air Quality Benefit

Better

/ Energy efficiency !

Energy & resource demand
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Need metrics for axes

+ Depends on climate and health policy goals and
time horizon
+ Climate

= |IPCC AR5 published emission metrics for BC and
co emissions: Global Warming Potential, Global
Temperature potential (20,50,100 year horizons)

= Need to decide if things that cool the climate,
e.g. SO2 are “good”: may adversely affect rainfall

33
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Present day emissions weighted by metrics
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BC from different sectors has significant effect on 20 year
temperature change from 2011 emissions (single year)

Waste /landfill
Biomass burning
Agr. Waste burning
Agriculture

Animal Husbandry

Household fossil fuel
and biofuel

Shipping
Non—road
Road
Aviation
Industry
Energy

ARS5 Fig 8.26
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NH; [
ACI [
SO, I
oc |
sC I
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vOC

NO, |
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co, M

Temperature impact at 20 years [mK]
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Need metrics for axes

+ Depends on climate and health policy goals and
time horizon

+ Climate

= |IPCC AR5 published emission metrics for BC and
co emissions: Global Warming Potential, Global
Temperature potential (20,50,100 year horizons)

= Need to decide if things that cool the climate,
e.g. SO2 are “good”: may adversely affect rainfall

+ Several health/air quality metrics exist
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Health Metrics

Table 7. Summary of comparison of pooled effects for PMy; and BS
from time-series studies

Health outcomes MNo. of Percentage change per 10 pg/m3 increase
estimates (95% Cl)
PMiq BS
Mortality
All causes 7 0.48: (0.18-0.79) EI.EE_' (0.31-1.06)
CVD 7 0.60 (0.23-0.97) 0.90 (0.40-1.41)
Respiratory diseases 7 0.31 (-0.23-0.86) 095 (0.31-2.22)
Hospital admissions
All respiratory diseases, elderly people B I:].T"D: (0.00-1.40) -0.06 (-0.53-D.44)
Asthma + chronic obstructive pulmonary 9 0.86 (0.03-1.70) 022 {0.73-1.18)
disease, elderly people )
Asthma, children 5 0.69 (-0.74-2.14) 1.64 (0.28-3.02)
Asthma, young adulis 9 0.77 (-0.05-1.61) 0.52 {-0.51-1.33)
Cardiac, all ages 4 0.51 (0.04-0.98) 1.07 (0.27-1.89)
Cardiac, elderly people 4 0.67 (0.28-1.086) 1.32 (0.28-2.38)
lzchaemic heart disease, elderly people 9 0.68 (0.01-1.36) 1.13 (0.72-1.54)

=

BC likely worse than
average PM

Source; Janssen et al., 2011.
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Health Metrics: Issues

+ How to measure?
+ Concentration based, not emission based
+ Indoor/outdoor exposure?

+ Response functions very poorly known,
regionally specific, short and long-term exposure
effects
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Implications for BC reduction advocates

+ Air quality & health always has a win

+ Can’t reduce BC forcing without affecting co-
emissions

+ Can find climate “wins”
= ldentify BC-rich categories
= ldentify appropriate sources within category

+ BC-rich sources are most climate-friendly way to
reduce health effects

= Even If effect i1s uncertain or neutral!

40



KEY AREAS FOR PROGRESS
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Key areas for progress

+ Measuring emissions and co-emissions
(standardization)

+ Measuring concentrations

+ Reduce uncertainty in climate effects, especially
regional effects

+ BC specific health effects
Remember:

+ BC mitigation can only limit near term rate
of change; CO, cuts needed to keep below
4C or any other target
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EXTRA SLIDES
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Well Mixed GHG

Short Lived Gases

Aerosols and Precursors

Others
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Policy, but not science, focus on SLCFs

* Lack of adequate scientific foundation for
black carbon’s role in climate forcing from
non-governmental organizations (NGQOs).

Ray Minjares (International Council on Clean Transportation);

Ellen Baum (Clean Air Task Force); Catherine Witherspoon

(Climate Works Foundation); Durwood Zaelke (Institute for
Governance and Sustainable Development)

e Required an international
assessment given the
complexity of BC and the
poor state of the existing
scientific literature.
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Guiding principles

Framework: Provide a framework to discuss and evaluate
the role of black carbon in the climate system

Comprehensive: Account for all known effects of BC on
climate

Quantitative: Provide best estimate and 90% uncertainty
bounds for each effect

Diagnostic: Explain differences in published forcing and
Impact values
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Sulphur from shipping
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Climate Metrics

1. IPCC AR5 published some emission metrics for
BC and co emissions: Global Warming Potential,
Global Temperature potential

Need to choose metric and time horizon for policy

Unlike Kyoto gases, global response varies with
location of emission

BC emissions are very hard to measure and audit —
no standard

Regional responses may be different

Need to decide if things that cool the climate, e.qg.
SO2 are “good”: may adversely affect rainfall
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View of trade offs

‘ Climate Change Detriment

Worse

4 R

Air Quality Benefit

Flue gas desulfurization

Three-way catalysts
{petrol)

Diesel particulate filters

Unceontrelled coal and oil
fossil fuel usage in
stationary and mobile
sources

R\ y

Better

/ Energy efficiency

Energy & resource demand
management

Muclear
Wind, aolar, tidal
Nitrogen efficiency

Hybrids, Low & zero emissions
wehicles

Carbon capture & storage j

Increase in ‘uncontrolled’
diesel

Biofuels
Biomass

Buying emissions credits
Overseas

\ /

| Air Quality Detriment |

Schneidemesser and Monks, 2013

' jyeuag ebBueyn sjewnn

49



Reglonal dependence:
a missing piece in Bounding-BC and IPCC
ARS

Bounding-BC and IPCC presented global averages.
Not enough studlies to support more analysis

Differences between regional emissions:

+ Near-snow: BC more warming, OC less cooling

+ Cloud effects: probably significant, but unexplored
+ Snow forcing: large near snow regions

+ Ozone precursors: higher in tropics
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Take-home messages

+ “Bounding-BC” achievement:
set up a framework for comprehensive analysis

+ Today’s understanding:
BC climate forcing is comparable to methane
+ Mitigation:

= Sources for climate WIN need to be carefully
chosen

= Sources for climate NEUTRAL are BC-rich
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BC mitigation can limit near term rate of change; CO2 cuts needed do
keep below 4C or any other target

AR5 science implications for urgency and priority (goal dependent)

e Prevent X°C warming: cumulative CO2 is what matters (timing less
Important). BC mitigation can shave off peak (by 0.5 °C if significant
CO2 mitigation begins before SLCP cuts.

« Ameliorate temperature rise out to 2100: BC cuts can help reduce this
but it doesn’t matter when they occur (prior to 2090), CO2 mitigation
still best way.

* Prevent rate of change now to give us time to adapt: BC cuts now are
better than CO2 for doing this.

* Prevent rate of change now to give us time to mitigate CO2: a non
sequitur and a whole heap of trouble!
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Indirect measure of “climate impact”

Change In energy flux caused by natural and
anthropogenic drivers of climate change

Positive =» near-surface warming

Puts various drivers on common scale



	Black carbon:�Climate Effects
	Slide Number 2
	Today’s talk
	Observations show strong warming trends
	Slide Number 5
	Contrast BC and CO2
	What is Black Carbon?
	 
	Black carbon is a small component of mass
	Slide Number 10
	Climate Effects of BC
	“Comprehensive” with regard to climate effects
	Estimate of�black carbon�forcing �from Bounding-BC
	Slide Number 14
	Unlike CO2, BC is not evenly distributed
	Slide Number 16
	Snow and ice
	BC deposited on snow has positive forcing
	Slide Number 19
	Climate Mitigation via BC
	BC alone is a an incomplete story
	BC emissions by region & source type
	Guide to “first-year” forcing graphs
	What if the uncertainty crosses zero?
	Climate forcing: �BC-rich source categories
	Cumulative forcing (add selected categories)
	Health vs. Climate Effects of BC
	View of trade offs
	View of trade offs
	View of trade offs
	View of trade offs
	View of trade offs
	Need metrics for axes
	�Climate Change��Radiative Forcing��Atmospheric�Concentrations��Emissions��Human Activities
	Present day emissions weighted by metrics
	BC from different sectors has significant effect on 20 year temperature change from 2011 emissions (single year)
	Need metrics for axes
	Health Metrics
	Health Metrics: Issues
	Implications for BC reduction advocates
	Key Areas for Progress
	Key areas for progress
	Extra Slides
	Slide Number 44
	Slide Number 45
	Guiding principles
	Sulphur from shipping
	Climate Metrics
	View of trade offs
	Regional dependence:�a missing piece in Bounding-BC and IPCC AR5
	Take-home messages
	BC mitigation can limit near term rate of change; CO2 cuts needed do keep below 4C or any other target�
	Slide Number 53

